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Scope

To obtain the highest quality data from clinical research 

biomarker studies, it is crucial to design your experiments with 

consideration for both platform- and sample-associated sources 

of variability. Controlling for these types of variability is not only 

good laboratory practice, but it allows you to uncover relevant 

associations in your data more easily and accurately. In this 

white paper, we briefly introduce the nCounter® technology, then 

propose experimental designs and best practices to minimize 

the effects of technical variability in your assays. We also present 

an in-house study and summarize examples from peer reviewed 

publications to provide context for the application of these 

concepts in clinical research biomarker studies and laboratory 

developed tests.

It is important to define the types of variation that can occur 

in a biomarker study and their respective sources. A batch 

effect is a general term used to describe the technical variation 

that could come from a variety of sources, including sample 

collection methods, hybridization conditions, differences in 

system settings and performance, or operator behavior. These 

sources of variability are beyond the scope of this document, 

but careful planning and experimental design can mitigate their 

effects. Lot-to-lot variation is a type of batch effect that refers 

to the technical variability between different lots of reagents 

used in a study, and this topic is what will be primarily addressed 

in this document. There are two sources of lot-to-lot variation 

to consider in a NanoString experiment: consumable lots and 

CodeSet lots. We will discuss the use of a calibration sample to 

control for variability between both types of reagents.

As it is assumed that users will have some familiarity with data 

quality control and analysis, including statistical methods for 

clinical study design, we do not discuss those topics in detail 

here. Contact support@nanostring.com to learn more about 

data analysis with NanoString products or to ensure you have the 

most up-to-date guidance and documentation.

Intrinsic advantages of multiplexed,  

enzyme-free, single-molecule counting

The NanoString nCounter platform is a direct, enzyme-free, 

digital counting technology that relies on base pairing and 

does not require target molecule amplification (1). Due to the 

robustness and intrinsic technical reproducibility of nCounter 

technology, it has become a platform of choice for clinical 

research biomarker studies, especially those using clinical 

research samples derived from body fluids or damaged from 

formalin fixation (2).

NanoString’s nCounter chemistry utilizes fluorescently barcoded 

probes that specifically hybridize to target molecules of interest. 

These target-probe complexes are captured and imaged for 

direct digital counting on the nCounter platform (3). Positive and 

negative control probes are built into all nCounter reagents such 

that every reaction can be internally monitored for performance 

(4). These controls can be used to calculate quality control (QC) 

metrics that allow investigators to quantitatively evaluate the 

performance of both the chemistry and instrumentation across 

many variables (for more details on calculating QC metrics, 

refer to the nSolver™ User Manual [5]). Sample processing can 

also be fully automated using nCounter robotics. The ability to 

multiplex samples and controls, combined with the simplicity 

of an enzyme-free reaction, effectively minimizes the need for 

technical replicates during test development* (2,6). 

Strategies and tools for controlling lot-to-lot 

variability in a biomarker experiment

Lot-to-lot variability may mask changes in your data, potentially 

resulting in missed associations. This variability may also simulate 

changes in data, which can frequently be misinterpreted as 

having biological origin and significance. Lot-to-lot variability 

can originate from two main sources in a NanoString experiment: 

differences between lots of consumables or between lots of 

CodeSets. Below we will address strategies for assessing and 

mitigating each.

Evaluation of variance from consumables 

A NanoString Master kit contains a variety of consumables, 

including a cartridge, reagent plates, and hybridization 

buffer. Each of these consumables can differ slightly in the 

manufacturing process from lot-to-lot, which can introduce 

variability into your experiment. These components usually 

affect all targets in a single experiment equally, and hence, 

the variations can be normalized through use of NanoString’s 

intrinsic positive controls as well as the housekeeping genes in 

your CodeSet. We recommend normalizing your data for lot-to-

lot differences in consumables across a single CodeSet lot.

Best Practices for Clinical Research Biomarker Studies  

Using the nCounter® Platform

mailto:support%40nanostring.com?subject=NanoString%20Support
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In general, the calibration sample should contain targets that 

produce a robust signal for all probes in the CodeSet, and as 

much as possible, these targets should mimic the intended 

natural targets in your experimental samples. Furthermore, the 

calibration sample should be affordable to generate and relatively 

easy to reproduce or change when necessary. Table 1 describes 

the types of calibration samples that can be utilized to normalize 

data across multiple CodeSet lots.

The calibration sample you choose may be either a biological or 

synthetic template but should be run and analyzed as outlined in 

tech note TN_MK3415_Panel Standard.  

Use of a calibration sample for normalization and mitigation  

of variance between CodeSet lots

Differences between lots of CodeSets can also introduce 

variability into your study. Due to differences in manufacturing, 

the hybridization efficiency for each probe pair will vary slightly 

between each new lot of CodeSet. For longitudinal studies 

across multiple CodeSet lots, it is critical to include one or more 

calibration samples to calibrate counts across all probes.

A calibration sample could be a pool of RNA (or lysates) of 

representative samples in the study, a commercially available 

reference RNA sample, or a pool of target oligonucleotides (6). 

The ideal type of calibration sample for your study depends 

on the size of the CodeSet as well as the purpose of your 

experiment. 

Calibration 
Sample

Nucleic Acid Cost Pros Cons

Biological 

sample(s)

Total RNA (for gene 

expression)  

or Genomic DNA  

(for CNV)

$ • Cost-effective

• Easily prepared

• Best representation of size and 

secondary structure of naturally 

occuring target molecules

• Some targets may be expressed below 

background levels

• Signal may vary considerably

• Difficult to reproduce consistently

Unpurified 

oligonucleotides

Single-stranded DNA 

(approx. 100 bases)

$ • Cost-effective

• Easily prepared

• Adequate for most applications

• Variable size profile

• Signal varies even nominally equimolar 

targets

• Difficult to reproduce consistently

• DNA does not fully represent RNA targets, 

including size and secondary structure

PAGE-purified 

oligonucleotides

Single-stranded DNA 

(approx. 100 bases)

$$ • Full strength for all targets

• Easily reproducable

• DNA does not fully represent RNA targets, 

including size and secondary structure

In vitro-

transcribed RNA

RNA (approx. 250 

bases or greater)

$$$ • Representative of RNA targets

• Can be made to mimic the size of 

naturally occuring targets

• Reproducible

• Expensive, especially for studies involving 

secondary targets

• Labor-intensive

Panel Standard Single-Stranded DNA 

(100 bases)

$ • Cost-effective

• No preparation needed

• Specific to the nCounter Panel 

you are using

• DNA does not fully represent RNA targets

• Only for some nCounter panels 

TABLE 1: Overview of different types of calibration samples

https://www.nanostring.com/support-documents/panel-standard-and-calibration-sample-usage/
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Use of a calibration sample for normalization and mitigation  

of variance between CodeSet lots

The calibration sample can also be used to determine assay 

linearity for each probe in a CodeSet prior to the commencement 

of a study. The concentration of the calibration sample should be 

high enough to produce a robust signal for all target nucleic acids 

but not so high as to cause saturation of the imaging surface. 

Low concentrations of sample will produce low and inherently 

more variable counts, which are less reliable for normalizing 

experimental data. 

Figure 2 illustrates the dynamic range in a NanoString 

hybridization reaction using an equimolar probe pool of DNA 

oligonucleotides. A titration curve was generated for a calibration 

sample at final target concentrations of 0.0625 fM to 16 fM. The 

accompanying data in Table 2 suggest that 4 fM is a sufficient 

input concentration to produce high counts and a low coefficient 

of variance (CV). If using synthetic targets as a calibration 

sample, NanoString recommends a concentration between 4 and 

16 fM, however empirical testing and validation of the optimal 

concentration for your study may be required.

Case study comparison of four CodeSet lots

To illustrate the high correlation of expression data across multiple 

CodeSet lots, NanoString constructed four separate lots of the 

nCounter Human Inflammation panel, a 189-gene CodeSet. Although 

the target sequences and barcode assignments remained unchanged, 

each lot was manufactured separately. Each of the four separate lots 

was hybridized to a commercially available human RNA calibration 

sample (referred to as Human Reference RNA). Each set was run 

in quadruplicate using standard nCounter procedures (3). The data 

sets were normalized separately to the internal positive controls 

as described in our Gene Expression Data Analysis Guidelines (8). 

Normalized counts were averaged across the four replicates for each 

sample per CodeSet. The number of genes detected in the Human 

Reference RNA for each CodeSet was determined based on two 

standard deviations above the average background; genes below 

background levels were omitted from further analysis. 

Precision

We first examined the precision of the quadruplicate 

measurements as a function of overall expression levels for all four 

CodeSets. Figure 3 shows a scatter plot of the percent coefficient 

of variation (CV) versus the average expression for the Human 

Reference RNA compared across all four CodeSet lots. We can 

conclude from this that the precision of the assay does not vary 

between lots and is clearly a function of the number of counts.

FIGURE 2: Titration of a PAGE-purified DNA calibration sample from 
0.0625 - 16 fM of each synthetic target. 

FIGURE 3: Percent CV vs average expression over four CodeSets. 

TABLE 2: Average counts, standard deviation (SD), and coefficient of variation (CV) for a titrated calibration sample. CV values were calculated separately for each 
individual probe in the CodeSet and then averaged.

Concentration (fM) Average Counts Average SD Average CV

0.0625 11 3.4 32.3%

0.25 41 5.1 13.2%

1 165 11.9 7.3%

16 2,849 81.7 2.9%
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Correlation in Absolute Expression

The correlation plot in Figure 4 illustrates how raw counts vary 

across different CodeSet lots. The difference between individual 

probe counts across lots may vary by as much as 5-fold (data 

not shown). While these raw counts do have some variance, 

normalization to controls and housekeeping genes frequently 

removes much of this. When fold change ratios are calculated for 

each experiment (see next section), most of the variation in raw 

counts between lots is eliminated (Figure 5).

Fold Change Correlations

We explored how fold changes between Human Reference RNA 

and a second calibration sample, Brain Reference RNA, differed 

across the different CodeSet lots. To reduce the impact of low-

expressing genes, we removed those with expression levels close 

to background (lower than 50 counts in the calibration sample for 

all four CodeSets). The data in Figure 5 is the log2 ratio of Brain 

Reference RNA to Human Reference RNA.

Using a conservative approach to background thresholding (8), 

the R2 value for log2 ratios between CodeSet1 and the other three 

CodeSets is 0.99. Thus, variation in measuring relative changes in 

gene expression levels between samples using different CodeSet 

lots is low.

Observations from peer reviewed publications

Numerous publications have evaluated the NanoString nCounter 

platform for use in clinical research biomarker studies. Collectively, 

these pieces analyze the major technical and biological sources 

of variability inherent in clinical research biomarker studies. We 

recommend careful review of the publications referenced in 

the next section for strategies and recommendations on best 

practices to successfully implement experiments using the 

nCounter platform.

Effects of lot-to-lot CodeSet variance

Talhouk et al., 2016 (9) describe a strategy for conducting both 

prognostic and diagnostic clinical tests using the NanoString 

platform with a calibration sample to correct for batch effects. In 

this study, the authors used a DNA oligonucleotide probe pool as 

a calibration sample, which contained all the targets of interest for 

cohorts of two cancer samples, ovarian and Hodgkin’s lymphoma. 

Two different CodeSet lots were used to assess ovarian targets, 

and three different lots were used to assess lymphoma targets. 

After quality control metrics were assessed, the authors calculated 

the fold-change in expression levels across all targets relative 

to the housekeeping genes. Next, they assessed the variability 

associated with the different CodeSet lots used in the study.  

They computed a gene-wise percentage change in log-expression 

between batches of CodeSets, and noted a median percent 

change of about 10% for both ovarian and lymphoma clinical 

samples, with some genes more stable than others across the 

CodeSets. The authors concluded that this relatively small amount 

of variability can be easily mitigated by good experimental design 

and appropriate planning. 

FIGURE 4: Raw counts of CodeSet Lots: 2 vs. 1, 3 vs. 1, & 4 vs. 1. 

Raw Counts Study Correlation Plot

FIGURE 5: log2 ratio of Brain Reference RNA to Human Reference RNA  
(>50 counts) in CodeSet Lot 2 vs. Lot 1, 3 vs. 1, & 4 vs. 1

Fold Change Study Correlation Plot

FIGURE 5: log2 ratio of Brain Reference RNA to Human Reference RNA  
(>50 counts) in CodeSet Lot 2 vs. Lot 1, 3 vs. 1, & 4 vs. 1
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To further address the potential for variability across multiple 

barcoded-probe lots, a similar approach was adopted by Adam 

et al., 2016 (10) using renal allograft biopsies from FFPE blocks. 

Oligonucleotide probes representing a 34-gene signature were 

designed and manufactured as an nCounter Elements assay. 

The authors first performed an RNA titration experiment with 

four different input RNA quantities: 50, 100, 200, and 400 

ng, with replicates run of each. The correlation between the 

recommended 100ng input and replicates with lower or higher 

amounts was excellent, with a mean correlation coefficient of 

0.998 (p<0.001). To compare results across users, three different 

operators of varying technical experience performed replicate 

analysis using the same three samples. Again, results showed 

excellent correlation between results from each operator, with 

a correlation coefficient of 0.998 (p<0.001). To simulate the 

factors introduced during a multi-site study, a third reproducibility 

experiment tested six replicates of twelve samples; each sample 

was run twice with three different barcoded-probe lots. Each pair 

of replicates showed high correlation, with a mean correlation 

coefficient of 0.983 (p<0.001). Analysis of lot-to-lot variance 

resulted in high correlation, as well, with an F-test statistic of 

0.0001 (p=0.9998). The authors conclude from these experiments 

that NanoString’s platform is reproducible across a wide range of 

input RNA quantities, that it is technically easy to use, and that its 

methodology is robust.

Effects of sample variance

Acquisition, purification, and quantitation of samples introduce 

the largest and most important sources of variability in a clinical 

research biomarker study. A recent publication by Veldman-

Jones et. al., 2015 (6) investigated these as well as other sources 

of variability in multiplexed gene expression analysis using the 

nCounter platform. 

The authors first evaluated the effects of platform-associated 

variables. They used two different Prep Stations to prepare 

cartridges, comparing the effects of different FOV scan settings, 

and examined the impact of using different scanning slots in the 

Digital Analyzer. In each case, no significant variability or bias was 

found in the data, underscoring the inherent robustness of the 

nCounter platform.

Next, sample and tissue type were evaluated for their effects 

on data reproducibility and platform sensitivity. Various sample 

types—fresh, frozen, and FFPE—were tested, as were multiple 

tissue types, including diffuse large B-cell lymphoma (DLBCL), 

melanoma, gastric, lung, breast, pancreas, and prostate tissues. 

To assess technical variability, data from replicate DLBCL samples 

processed in a single day were compared to data from a similar 

set-up processed on two different days. Low- and high-quality 

samples were both tested under this scenario to determine 

the impact of sample quality on nCounter data. No difference 

in technical reproducibility was observed, as the R2 value was 

greater than 0.98 for all samples tested. 

The authors also assessed technical variability within biological 

sample replicates by using a set of gastric tumor samples. RNA 

was extracted from adjacent tissue sections of several gastric 

tumor blocks and the gene expression profiles across sample 

replicates were compared for both intra- and inter-sample 

reproducibility. A good correlation of samples from within the 

same tumor was observed; the mean intra-sample CV was 6.47% 

and the R2 values ranged between 0.59-0.93. Comparatively, data 

from samples taken from different tumor blocks showed a CV of 

12.09%, and R2 values between 0.33-0.7. This data suggests that 

the nCounter platform is robust enough to discern differences in 

gene expression between different tumor samples.

In addition, this group examined the effect of sample quality 

and quantity on nCounter performance. To assess sample 

quality, gene expression levels between matching fresh, frozen, 

and FFPE sample types were compared. The correlations were 

found to be robust, as only small differences between matching 

fresh and frozen replicates were observed, and these values 

were comparable with technical variation. To assess the effects 

of sample quantity, fresh versus FFPE samples were titrated, 

showing that equivalent data could be generated with 100 ng 

and 400 ng, respectively. Four low-quality FFPE lung samples 

were evaluated across a 2-fold dilution series from 50 ng to 3.13 

ng. Even at a low input of 6.25 ng, the highly-expressed genes 

retained a good correlation relative to those in 100 ng samples, 

illustrating that even small inputs of low-quality samples can 

generate meaningful data with the nCounter platform.

In light of their results, Veldman-Jones et. al. concluded that “the 

nCounter platform [is] favorable over other techniques based 

upon sensitivity, technical reproducibility, robustness, ease of use, 

hands-on analysis time, and utility for clinical application”.
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Effects of sample quality

Omolo, et. al., 2016 (11) describe the development and validation 

of a RAS pathway signature score for colorectal cancer samples 

derived from fresh frozen and FFPE tissue. This cross-platform 

study evaluated Next Generation Sequencing, microarray 

platforms, and NanoString nCounter technology. The initial cohort 

included 54 samples, 27% of which were of poor quality.  

The NanoString platform alone was able to replicate the signature 

on FFPE when all samples were included, with only 39 samples in 

the experiment successfully analyzed by the other platforms. The 

authors concluded that the NanoString platform is best suited to 

analyze poor quality samples.

Summary

Given the regulatory requirements and significant financial 

investment of undertaking a clinical research study, it is 

important to understand the sensitivity of any diagnostic 

test to the possible intrinsic sources of variance. The inherent 

robustness of nCounter technology, coupled with over ten years 

of continuous improvements in our manufacturing processes, 

has resulted in a “best-in-class” technical reproducibility when 

using clinical research samples. The nCounter platform is ideal 

for longitudinal biomarker studies. It generates reproducible 

and robust measurements from diverse clinical samples, which 

are notoriously variable in both quality and quantity. Successful 

execution of an oncology biomarker study relies upon the use of 

a carefully selected calibration sample and a sample population 

which represents biological sources of variability across the 

disease state

Best practices for clinical research studies 

using the nCounter platform

• Consider appropriate study design as early as possible 

in study development; to optimize your experimental 

design, diagnostic development expertise is available 

from NanoString in a collaboration setting.

• Select appropriate synthetic or biological calibration 

samples to evaluate and normalize for the inherent 

variance in your study.

• Consider regulatory requirements and the final format 

of your actual test (multi-analyte signature, multiplex 

pathogen detection, companion diagnostics, required 

controls, etc.) as early as possible in the study design 

and development.
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